Layout of Analog Circuits

Jyotirmoy Ghosh

Asudeb Dutta

Advanced VLSI Design Lab
Fully Custom IC Design Flow

- Circuit schematic
 - Composer
- Circuit pre-simulation
 - Spice/Spectre
- Layout
 - Virtuoso
- Design rule check (DRC)
 - Assura/Hercules
- Layout v.s. Schematic (LVS)
 - Assura/Hercules
- Parasitic Extraction
 - Assura/StarRCXT
- Circuit post-simulation
 - Spice/Spectre
IC Photolithographic Process

- Apply material to wafer to be patterned
 - Material
 - Wafer

- Spin on positive photoresist
 - Photoresist
 - Material

- Pattern photoresist with UV light through glass mask
 - UV light
 - Glass mask
 - Chrome pattern
 - Soluble photoresist

- Etch and apply specific processing step
 - Etch away unwanted material

- Wash off photoresist
 - Patterned material
MOSFET (NMOS) Structure
CMOS P-Substrate Process Flow

- Cross section view

- NMOS process steps
 - Active region, poly gate, p+/n+ implant, metal contact/line

- PMOS process steps
 - N well, active region, poly gate, p+/n+ implant, metal contact/line
Process Flow v.s. Layout

- Poly gate
- POLY1 layer (PO)

```
SiO₂   Poly   SiO₂
  ↑       ↓       ↑
 n well   p substrate
```

```
SiO₂   Poly   SiO₂
  ↑       ↓       ↑
 n well   p substrate
```
Process Flow v.s. Layout

- **P+/N+ implant**

- **PIMP layer (PP)**

- **NIMP layer (NP)**
Process Flow v.s. Layout

- **Metal contacts/lines**

- **CONT layer (CO)**

- **METAL1 layer (M1)**
Process Flow v.s. Layout

- **Metal vias/lines**
 - Via widows
 - SiO₂
 - P+ Poly
 - N well
 - P substrate

- **VIA12 layer (VIA1)**
 - X

- **METAL2 layer (M2)**
 - Yellow

- **SiO₂**
 - P+ Poly
 - N well
 - P substrate
Stick Diagram (Symbolic Layout)

In stick diagram the lines represents the corresponding layers in layout. i.e. rather than drawing a rectangle to draw poly you are just drawing a line. This simplify designer's work in drawing layout "on paper".

1. Dimensionless layout entities with legend for each layer.
2. Only topology is important.

Stick Diagram of Inverter

Actual Layout of Inverter
Design Rule Check (DRC)

- Tolerate nonideal effects and guarantee device successful fabrication
 - Mask alignment error
 - Ex: alignment of N well and active region masks

![Diagram showing PMOS and n well with SiO2 layers and shift and short issues]
Design Rule Check (DRC)

- Exposure and etching variation
 - Ex: different contact windows → different contact resistance

- Two types of design rules

 ![Diagram showing resolution and alignment]

 - Minimum width
 - Minimum spacing
 - Contact overlap
 - Poly-diff. spacing
 - Poly-contact spacing
 - Poly overlap
 - Contact overlap
Layout v.s. Schematic (LVS)

- Guarantee the fabricated circuits is the same as the simulated one
 - Check device parameters
 - Check device interconnections and circuit input/output ports

Model name
Channel width
Channel length

VDD
VI
VO
GND
Parasitic Extraction (PEX)

- Evaluate interconnection RC effects

Only C effect

Only R effect
Layout Steps

• Floor planning
 Division of the entire die area among subcomponents to facilitate interconnection and effectively utilize the area.

• Placement
 Placing the modules in the layout.

• Routing
 Connecting the modules with different metal layers.
Issues of Analog Layout

• Use of more number vias
• Fingering and proper orientation
• Device matching
• Symmetrical and common centroid layout design
• Use of Guard ring and substrate trapping
Passive devices

Resistance (cont’d)

Resistors:

1) RPD (P+ Diffusion) -> R (sheet) = 83 ohm/

![Diagram of resistors and diffusion layers]
Passive devices

Resistance (cont’d)

P+ Diffusion (RPD)

Equivalent Model

Equation: area = pPort("diodeArea")/2

Equation: area = pPort("diodeArea")/2.
Passive devices

Resistors:

1) RND (N+ Diffusion) \rightarrow \text{R (sheet)} = 32 \text{ ohm/}
Passive devices

Resistance (cont'd)

N+ Diffusion (RND)

P substrate

Equivalent Model
Passive devices

Resistance (cont’d)

Resistors:

1) RPP (P+ Poly) -> R (sheet) = 175 ohm/
Passive devices

Resistance (cont’d)

Equivalent Model
Passive devices

Resistance (cont’d)

Resistors:

1) RNP (N+ Poly) -> R (sheet) = 125 ohm/
Passive devices

Resistance (cont’d)
Choice of Resistances:

- Parasitic effect
- Process variation,
- Temperature variation,
- Operating frequency
- Area of resistance
- There are many others resistors: RWA, PHVPP, RHVNP etc
Passive devices
Capacitance

- Capacitance types
 - Area - Area
 - area \((W \times L)\), 1/distance \((1/d_2)\)
 - Fringe - Area
 - length \((L)\), 1/distance \((1/d_2)\)
 - Fringe - Fringe
 - length \((L)\), 1/distance \((1/d_1)\)
Passive devices

Capacitance (cont’d)

Capacitor:

CPP (over the substrate) : 0.86×10^{-3} F/m2
Passive devices

Capacitance (cont’d)

\[C_{\text{total}} = C_a \times W \times L + C_f \times (2W + 2L) \]

\[C_a = 0.8629 \times 10^{-3} \quad C_f = 0.8629 \times 10^{-3} \text{ (F/m}^2\text{)} \]
Passive devices

Capacitance (cont'd)

Capacitor:
CPP (over the Nwell) : \(0.86 \times 10^{-3} \text{ F/m}^2\)
Passive devices

Capacitance (cont’d)

\[C_{\text{total}} = C_a \times W \times L + C_f \times (2W + 2L) \]

\(C_a = 0.8629 \times 10^{-3} \quad C_f = 0.8629 \times 10^{-3} \quad \text{(F/m}^2\text{)} \)
Passive devices

Capacitance (cont’d)

Capacitor:

Accumulation capacitor: $6.166 \times 10^{-3} \text{ F/m}^2$
Passive devices

Capacitance (cont’d)

There are many others capacitors: COMB cap, Interdigitized Cap, MOS Varactor cap
Capacitor:

- Good matching accuracy
- Low voltage coefficient
- Less parasitic capacitance
- High capacitance per area
- Low temp. coefficient
Interconnection

- **CMOS static logic**
 - Only consider RC delay
 - Use minimum metal width

- **RC constant**

- **Analog circuits**
 - Metal width is decided by
 - **Current density**
 - Ex: 1 mA/μm for M1
 - **Parasitic resistance**
 - Ex: $M1 < 0.13 \Omega/\text{square}$
 - **Parasitic capacitance**
 - Ex: $M1-\text{Sub} (0.4 \text{ μm width})$
 - ~ 0.073 fF/μm
Interconnection (cont’d)

- **CMOS static logic**
 - Contact/Via resistance is minor effect in RC delay
 - One contact/via can be used.

- **Analog circuits**
 - Contact/Via resistance may degrade circuit performance
 - At least two contact/via
 - Current density
 - Ex: 0.6 mA/via for VIA12

One Via resistance = 4-5 ohm
NMOS & PMOS (CMOS) on same substrate

- p-substrate
- n-substrate
- p-substrate
- n-well
Latch up problem

Permanent current flow between Vdd and Vss
Substrate Coupling

(a) Distributed Substrate Model

(b) p-substrate arrangement

(c) Graphs of CK, Vsub, and ID1 over time
Substrate Coupling
Guard ring

N+

POLY Composite

Metal 1
Guard ring and Substrate Contact

- Many MOSs may be in a single ring.
- The purpose of the ring is to bias the bulk also.
- It removes the latch up problem also.
- It is used around the passive devices also.
- It reduces the interference from the adjacent blocks.
- Width of the ring should not be bigger than a limit to ensure proper biasing.
Proper ground connection

• All the modules of the chip should be properly grounded.
• Use star ground.
• Ground metal should be wider.
• Vdd metal should also be wider.
• Try to avoid same Vdd line for a noisy and sensitive blocks.
• Use different pins for the noisy and sensitive blocks.
Star Ground
Things to remember

• Keep sufficient spacing between power blocks and sensitive blocks.

• Two high frequency carrying pins should not be side by side.

• Use ground pin to avoid magnetic coupling between two pins.
Matching of the devices
Why Special attention on Matching?

- A large variety of analog circuits rely on matching of transistors. Circuits like differential pair rely on gate to source voltage matching while current mirrors rely on current matching.

- Most integrated resistors and capacitors have a tolerance of about 20% to 30%. But ratio of two similar components can be controlled to a tolerance of 15 or even 0.1% by proper matching of the components.
Reasons of Mismatch

Mismatch in integrated circuits are generally of two types:

- Random mismatches due to microscopic fluctuations in dimensions, doping, oxide thickness and other parameters that influence component values.

- Systematic mismatches which are caused by:
 - Process biases
 - Mechanical stress
 - Temperature gradients
 - Polysilicon etch rates etc.
How does mismatch affect the performance of the circuit?

\[I_1 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 (V_{GS} - V_{t1})^2 \]

\[I_2 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 (V_{GS} - V_{t2})^2 \]

Defining average and mismatch quantities, we have

\[I = \frac{(I_1 + I_2)}{2} \quad \Delta I = I_1 - I_2 \quad W/L = \frac{[(W/L)_1 + (W/L)_2]}{2} \]

\[V_t = \frac{(V_{t1} + V_{t2})}{2} \quad \Delta V_t = V_{t1} - V_{t2} \]
Substituting these expressions and neglecting higher order terms we obtain:

\[
\frac{\Delta I}{I} = \frac{\Delta (W/L)}{W/L} - \frac{\Delta V_t}{(V_{GS} - V_t)/2}
\]

Thus from the above equation we can see that the mismatch in the current depend upon

1) Mismatch in the (W/L) values of the transistors.

2) Mismatch in the threshold values of the transistors which increases as the overdrive voltage \((V_{GS} - V_t)\) is reduced.
Input Offset voltage of a differential pair

\[V_{\text{OS}} = \Delta V_t + \frac{(V_{GS} - V_t)}{2} \left[-\frac{\Delta R_L}{R_L} - \frac{\Delta(W/L)}{W/L} \right] \]

Thus we see that the offset voltage depends upon two parameters:

- The first component is the threshold voltage mismatch of the transistors. This depends upon the layout and it can be reduced by careful layout.

- The second component of the offset scales with the overdrive voltage and is related to mismatch in the load elements and mismatch in the W/L values.
Rules for MOS transistor matching

- Place transistors in close proximity.
- Orient transistors in the same direction.
- Keep the layout of the transistors as compact as possible.
- Whenever possible use Common centroid layouts.
- Place transistors segments in the areas of low stress gradients.
- Place transistors well away from the power devices.
- For current matching keep overdrive voltage large.
- For voltage matching keep overdrive voltage smaller.
Rules for resistor and capacitor matching

- Construct matched resistors of same type.
- Make matched resistors of the same width.
- Orient matched resistors in the same direction.
- Place matched resistors in close proximity.
- Place the matched resistors in such a way that their centroids coincide i.e. interdigitate arrayed resistors.
- Place dummies on either end of the resistor array.
- Connect matched resistors to cancel thermoelectric effects.
Gradient-induced mismatches can be minimized by reducing the distance between the centroids of the matched devices. The layouts which actually reduce the distance between centroids of the matched pair to zero are called common centroid layouts.
Interdigitation can also be done in 2 dimensions

Common Centroid Layout (cont’d)

Common Centroid Layout for Resistors
Layout of Matched Resistors
Fingering of MOS and Common-centroid Layout example

interdigitised pmos

A B A B A
Layout of Multi-finger Transistors

Fingering

- Reduces gate resistance.
- Improves noise and delay

Drawback of Fingering

- Increases drain and source side-wall capacitance.
Example of MOS Layout with fingers

• Power MOSFET layout with large W/L ratio (in the order of 10^5-10^6)
Layout of Standard blocks

Cascode Transistors

![Cascode Transistor Diagrams](image)

Differential Pair

![Differential Pair Diagrams](image)
Layout of Standard blocks (cont’d)

Shadowing effect

Dummy (To provide very symmetric environment)

High frequency asymmetric due to the crossover of the wire

Gradient (Process)

→ Very difficult for wiring. It may introduce high-frequency
PAD, PIN & PACKAGE

PAD & ESD

- Pad cap ~80f-2pF
- Bondwire Inductor=1nH/mm
- Pin Inductor=1-2nH
- Pin Cap=300fF
Thank You