CHAPTER 3 DIODES

Chapter Outline
3.1 The Ideal Diode
3.2 Terminal Characteristics of Junction Diodes
3.3 Modeling the Diode Forward Characteristics
3.4 Operation in the Reverse Breakdown Region – Zener Diodes
3.5 Rectifier Circuits
3.6 Limiting and Clamping Circuits
3.1 Ideal Diode

Ideal diode characteristics

- An diode is a two-terminal device:
 - Anode: the positive terminal
 - Cathode: the negative terminal
- Forward biased → turned on → short
- Reverse biased → turned off → open

Circuit applications

\[Y = A + B + C \]
\[Y = A \cdot B \cdot C \]
3.2 Terminal Characteristics of Junction Diodes

I-V characteristics of junction diodes

- Diode current: $i = I_s (e^{v/nV_T} - 1)$
 - I_s (saturation current): proportional to diode area
 - n (ideality factor): between 1 and 2.
 - V_T (thermal voltage) ≈ 25 mV at room temperature
- The forward-bias region, determined by $v > 0$.
- The reverse-bias region, determined by $v < 0$.
- The breakdown region, determined by $v < -V_{ZK}$

Forward-bias region

- The simplified forward-bias I-V relationship:
 - For a given forward voltage: $i = I_s e^{v/nV_T}$
 - For a given forward current: $v = nV_T \ln(I / I_s)$
- Due to the exponential I-V relationship
 - $i \approx 0$ for $v < 0.5V$ (cut-in voltage)
 - Fully conduction for $0.6V < v < 0.8V \rightarrow V_{on} = 0.7V$

Temperature dependence

- I_s doubles for every 5°C rise in temperature.
- Volrage decreases 2mV/$^\circ$C for a given current.
- Current increases with temperature for a given voltage.
Reverse-bias region
- Reverse current: \(i \approx -I_S \)
- Ideally, the reverse current is independent of reverse bias.
- In reality, reverse current is larger than \(I_S \) and also increases somewhat with the increase in the reverse bias.
- Temperature dependence: reverse current doubles for every 10°C rise in temperature.

Breakdown region
- The knee of the I-V curve is specified as breakdown voltage \(V_{ZK} \) for Zener breakdown mechanism.
- The reverse current increases rapidly with the associated increase in voltage drop being very small.
- Normally, the reverse current is specified by external circuitry to assure the power dissipation within a safe range (non-destructive operation).
3.3 Modeling the Diode Forward Characteristics

Circuit analysis
- Determine the diode current I_D and voltage V_D for circuit analysis
- The equation required for the analysis:
 - $I_D = I_S \exp(V_D/nV_T)$ → diode I-V characteristics
 - $I_D = (V_{DD} - V_D)/R$ → Kirchhoff loop equation
- Need to solve non-linear equations

Graphical analysis
- Plot the two equations in the same I-V coordination
- The straight line is known as load line.
 - The intersect is the solution for I_D and V_D

Iterative analysis
- Set initial value $V_D = V_0$
- Use $I_D = (V_{DD} - V_D)/R$ to obtain I_1
- Use $V_D = nV_T \ln(I_D/I_S)$ to obtain V_2
- Repeat until it converges (I_3, V_4, I_5, V_6...)
- Iterations are needed to solve the nonlinear circuit
The need for rapid analysis

- Rapid analysis using simplified models for initial design.
- Accurate analysis (iterative analysis or computer program) for final design
- Rapid analysis (I): ideal-diode model
 - The most simplified model and can be used when supply voltage is much higher than the diode voltage
 - Diode on: $v_D = 0 \text{ V}$ and $i > 0$
 - Diode off: $i = 0$ and $v_D < 0 \text{ V}$
 - Equivalent circuit model as an ideal diode
- Rapid analysis (II): constant-voltage-drop model
 - The most widely used model in initial design and analysis phases
 - Diode on: $v_D = 0.7 \text{ V}$ and $i > 0$
 - Diode off: $i = 0$ and $v_D < 0.7 \text{ V}$
 - Equivalent circuit model as an ideal diode with a 0.7-V voltage source

Diagrams:
- Ideal-diode model diagram
- Constant-voltage-drop model diagram

NTUEE Electronics – L. H. Lu
Small-signal approximation

- The diode is operated at a dc bias point and a small ac signal is superimposed on the dc quantities:
 \[v_D(t) = V_D + v_d(t) \]
 \[i_D(t) = I_s e^{v_d/nV_T} = I_s e^{(V_D+v_d)/nV_T} = I_s e^{V_D/nV_T} e^{v_d/nV_T} = I_D e^{v_d/nV_T} \]

- Under small-signal condition: \(v_d / nV_T << 1 \)
 \[i_D(t) \approx I_D (1 + \frac{v_d}{nV_T}) = I_D + \frac{I_D}{nV_T} v_d = I_D + i_d \]
 - \(I_D \) associates with \(V_D \rightarrow \) dc operating point \(Q \)
 - \(i_d \) associates with \(v_d \rightarrow \) small signal response

- The diode exhibits linear I-V characteristics under small-signal conditions \((v_d \leq 10\text{mV}) \)

- Diode **small-signal resistance** and **conductance** at operating point \(Q \):
 \[i_d = \frac{I_D}{nV_T} v_d = g_D v_d = \frac{v_d}{r_d} \quad \rightarrow \quad g_d = \frac{I_D}{nV_T} = \left[\frac{\partial i_D}{\partial v_D} \right]_{i_D=I_D} \]
 \[r_d = \frac{nV_T}{I_D} = 1/ \left[\frac{\partial i_D}{\partial v_D} \right]_{i_D=I_D} \]

The diode small-signal model

- Choose proper dc analysis technique or model to obtain the operation point \(Q \)
- The small-signal model is determined once \(Q \) is provided
- The small-signal model is used for circuit analysis when the diode is operating around \(Q \)
Circuit analysis techniques for total quantities (AC+DC)

- Eliminate all the time varying signals (ac voltage and current sources) for operation point analysis
- Use rapid analysis or accurate analysis to obtain dc voltage and current at operating point Q
- Determine the parameters of small-signal models from Q
- Replace the devices with small-signal models and eliminate all the dc sources
- Circuit analysis under small-signal approximation
- The complete response (ac + dc) of the circuit is obtained by superposition of the dc and ac components

Voltage regulator by diode forward drop

- A voltage regulator is to provide a constant dc voltage regardless changes in load and power-supply voltage
- The forward-voltage drop remains almost constant at 0.7 V within a wide current range
- Multiple diodes in series to achieve the required voltage drop
- Better regulation can be provided for higher bias current and smaller r_d
3.4 Operation in the Reverse Breakdown Region – Zener Diodes

Symbol and circuit model for the Zener diode

- In breakdown region, a reverse bias (V_Z) beyond the knee voltage (V_{ZK}) leads to a large reverse current (I_Z).
- The diode in breakdown region is given by $V_Z = V_{Z0} + r_z I_Z$
 - The breakdown diode is modeled by a voltage source V_{Z0} in series with an incremental resistance r_z
 - Incremental voltage versus current: $\Delta V = r_z \Delta I$
 - The simplified model is only valid for $I_Z > I_{ZK}$ (knee current)
 - Equivalent r_z increases as I_Z decreases

- Diode types:
 - Diode: only forward and reverse regions are considered
 - Zener diode: forward, reverse and breakdown regions

![Zener Diode Symbol and Circuit Model](image)
Design of the Zener shunt regulator

- Output voltage of the regulator:

\[V_o = \frac{R}{R + r_z} V_{z0} + \frac{r_z}{R + r_z} V^+ - \frac{Rr_z}{R + r_z} I_L \]

- **Line regulation:** \(\frac{\Delta V_o}{\Delta V^+} = \frac{r_z}{R + r_z} \)

- **Load regulation:** \(\frac{\Delta V_o}{\Delta I_L} = -\frac{Rr_z}{R + r_z} \)

- Line and load regulation should be minimized
- For \(r_z \ll R \), line regulation can be minimized by choosing small \(r_z \)
- Load regulation can be minimized by choosing small \(r_z \) and large \(R \)
- There is an upper limit on the value of \(R \) to ensure sufficiently high current \(I_Z \) (\(r_z \) increases if \(I_Z \) is too low)
- \(R \) should be selected from \(R = \frac{V_{z_{\text{min}}} - V_{z0} - r_z I_{Z_{\text{min}}}}{I_{Z_{\text{min}}} + I_{L_{\text{max}}}} \)
3.5 Rectifier Circuits

Block diagram of a dc power supply

- **DC power supply**
 - Generate a dc voltage from ac power sources
 - The ac input is a low-frequency **large-signal** voltage

- **Power transformer**
 - Step the line voltage down to required value and provides electric isolation

- **Diode rectifier**
 - Converts the input sinusoidal to a **unipolar output**
 - Can be divided to **half-wave** and **full-wave rectifiers**

- **Filter**
 - Reduces the magnitude variation for the rectifier output
 - Equivalent to time-average operation of the input waveform

- **Voltage Regulator**
 - Further stabilizes the output to obtain a constant dc voltage
 - Can be implemented by Zener diode circuits
The half-wave rectifier

- Voltage transfer curve:
 \[v_s < V_{D0} \rightarrow v_o = 0 \]
 \[v_s \geq V_{D0} \rightarrow v_o = v_s - V_{D0} \]

- Rectifier diode specifications:
 - Current-handling capability: the largest current the diode is expected to conduct.
 - **Peak inverse voltage** (PIV): the largest reverse voltage the diode can stand without breakdown.
 - PIV = \(V_s \) (input voltage swing) and the diode breakdown voltage is selected at least 50% higher.
The full-wave rectifier (center-tapped transformer)

- Voltage transfer curve:
 - $|v_s|<V_{D0} \rightarrow v_O = 0$
 - $v_s \geq V_{D0} \rightarrow v_O = v_s - V_{D0}$
 - $v_s \leq -V_{D0} \rightarrow v_O = -v_s - V_{D0}$

- Transformer secondary winding is center-tapped.
- Peak inverse voltage (PIV) $= 2V_s - V_{D0}$.
- Rectified output waveform for both positive and negative cycles.
Full-wave rectifier (Bridge rectifier)

- Voltage transfer curve:
 - $|v_s| < 2V_{D0} \rightarrow v_o = 0$
 - $v_s \geq 2V_{D0} \rightarrow v_o = v_s - 2V_{D0}$
 - $v_s \leq -2V_{D0} \rightarrow v_o = -v_s - 2V_{D0}$

- Does not require a center-tapped transformer
- Higher turn-on voltage ($2V_{D0}$).
- Peak inverse voltage (PIV) = $V_s - V_{D0}$.
- Most popular rectifier circuit configuration.